|
osgEarth 2.1.1
|
Inheritance diagram for CubeManifold:
Collaboration diagram for CubeManifold:Public Member Functions | |
| CubeManifold () | |
| void | seed (Level maxLevel) |
| void | cull (osgUtil::CullVisitor *cv) |
| void | initialize (MeshManager *mesh) |
| osg::Vec3d | midpoint (const osg::Vec3d &mapCoord0, const osg::Vec3d &mapCoord1) const |
| osg::BoundingSphere | initialBound () const |
| MeshNode | createNode (const osg::Vec3d &manifoldCoord) const |
| osg::Vec3d | p (double x, double y, double z) const |
Public Attributes | |
| osg::BoundingSphere | _bs |
| osg::ref_ptr< const Profile > | _profile |
| osg::ref_ptr< const osg::EllipsoidModel > | _ellipsoid |
| osg::ref_ptr< Diamond > | _vd [8] |
| osg::ref_ptr< Diamond > | _fd [6] |
| osg::ref_ptr< Diamond > | _ed [12] |
The top-level diamond layout for a round earth
Definition at line 29 of file CubeManifold.
| CubeManifold::CubeManifold | ( | ) |
Definition at line 31 of file CubeManifold.cpp.
{
_profile = new osgEarth::UnifiedCubeProfile();
_ellipsoid = _profile->getSRS()->getGeographicSRS()->getEllipsoid();
}
| MeshNode CubeManifold::createNode | ( | const osg::Vec3d & | manifoldCoord | ) | const [virtual] |
creates a mesh node for a coordinate in manifold profile
Implements Manifold.
Definition at line 359 of file CubeManifold.cpp.
{
MeshNode node;
node._manifoldCoord = manCoord;
toLonLatRad( manCoord, node._geodeticCoord ); // our manifold coords are already geodetic
osg::Matrixd local2world;
_ellipsoid->computeLocalToWorldTransformFromLatLongHeight(
node._geodeticCoord.y(), node._geodeticCoord.x(), node._geodeticCoord.z(),
local2world );
node._vertex = local2world.getTrans();
node._normal = node._vertex;
node._normal.normalize();
//node._normal = _ellipsoid->computeLocalUpVector(
// node._vertex.x(), node._vertex.y(), node._vertex.z() );
node._geodeticRot = local2world.getRotate();
//OE_INFO << LC
// << "ROT: x=" << node._geodeticRot.x() << ", y=" << node._geodeticRot.y()
// << ", z=" << node._geodeticRot.z() << ", w=" << node._geodeticRot.w()
// << std::endl;
return node;
}
Here is the call graph for this function:| void CubeManifold::cull | ( | osgUtil::CullVisitor * | cv | ) | [virtual] |
apply culling to the manifold.
Implements Manifold.
Definition at line 405 of file CubeManifold.cpp.
{
for( unsigned short e=0; e<12; ++e )
{
_ed[e]->cull( cv );
}
}
| osg::BoundingSphere CubeManifold::initialBound | ( | ) | const [virtual] |
calculates the initial bound for the manifold.
Implements Manifold.
Definition at line 389 of file CubeManifold.cpp.
{
return osg::BoundingSphere( osg::Vec3d(0,0,0), _ellipsoid->getRadiusEquator() * 1.2 );
//return osg::BoundingSphere( osg::Vec3d(0,0,0), 2.0 );
}
| void CubeManifold::initialize | ( | MeshManager * | mesh | ) | [virtual] |
builds the base manifold mesh.
Implements Manifold.
Definition at line 38 of file CubeManifold.cpp.
{
// diamonds at or below level 3 are static and cannot be removed.
// Level 1 is the first Quadtree Ancestor. Level 3 contains the first Quadtree
// decendants (the decendants of the Level 1 quadtrees).
mesh->_minGeomLevel = 1;
mesh->_minActiveLevel = 3;
// Construct the eight root "vertex diamonds". These are used only for their
// vertex positions (as grandparents of the root edge diamonds). They have
// no children or ancestors of their own.
_vd[0] = new Diamond(mesh, TileKey(), 0, "vd0"); // X, -Y, Z
_vd[0]->setCoord( p(1, -1, 1) );
_vd[0]->_childValence = 3;
_vd[1] = new Diamond(mesh, TileKey(), 0, "vd1"); // -X, Y, Z
_vd[1]->setCoord( p(-1, 1, 1) );
_vd[0]->_childValence = 3;
_vd[2] = new Diamond(mesh, TileKey(), 0, "vd2"); // -X, -Y, -Z
_vd[2]->setCoord( p(-1, -1, -1) );
_vd[0]->_childValence = 3;
_vd[3] = new Diamond(mesh, TileKey(), 0, "vd3"); // X, Y, -Z
_vd[3]->setCoord( p(1, 1, -1) );
_vd[0]->_childValence = 3;
_vd[4] = new Diamond(mesh, TileKey(), 0, "vd4"); // X, Y, Z
_vd[4]->setCoord( p(1, 1, 1) );
_vd[0]->_childValence = 3;
_vd[5] = new Diamond(mesh, TileKey(), 0, "vd5"); // -X, -Y, Z
_vd[5]->setCoord( p(-1, -1, 1) );
_vd[0]->_childValence = 3;
_vd[6] = new Diamond(mesh, TileKey(), 0, "vd6"); // X, -Y, -Z
_vd[6]->setCoord( p(1, -1, -1) );
_vd[0]->_childValence = 3;
_vd[7] = new Diamond(mesh, TileKey(), 0, "vd7"); // -X, Y, -Z
_vd[7]->setCoord( p(-1, 1, -1) );
_vd[0]->_childValence = 3;
// Construct the 6 face diamonds. Exactly 2 faces parent each edge diamond (constructed
// later). The vertex position of each face diamond resides as the center of that face
// on the cube. The faces are carefully oriented so that child diamonds are anchored
// (i.e. have their QUADTREE ancestor) at the PARENT_L and PARENT_R positions. This is
// critical for proper subdivision and orientation propagation.
// The first 3 share vd0 as a common PARENT_L ancestor:
_fd[NEG_Y] = new Diamond(mesh, TileKey(0,1,0,_profile.get()), 1, "fd -y"); // -Y face (-90=>0 long)
_fd[NEG_Y]->setCoord( p(0, -1, 0) );
_fd[NEG_Y]->_a[PARENT_R] = _vd[2];
_fd[NEG_Y]->_a[PARENT_L] = _vd[0];
_fd[NEG_Y]->_a[QUADTREE] = _vd[5];
_fd[NEG_Y]->_a[GDPARENT] = _vd[6];
_fd[NEG_Y]->_orientation = 6;
_fd[POS_X] = new Diamond(mesh, TileKey(0,2,0,_profile.get()), 1, "fd +x"); // +X face (0=>90 long)
_fd[POS_X]->setCoord( p(1, 0, 0) );
_fd[POS_X]->_a[PARENT_R] = _vd[3];
_fd[POS_X]->_a[PARENT_L] = _vd[0];
_fd[POS_X]->_a[QUADTREE] = _vd[6];
_fd[POS_X]->_a[GDPARENT] = _vd[4];
_fd[POS_X]->_orientation = 0;
_fd[POS_Z] = new Diamond(mesh, TileKey(0,4,0,_profile.get()), 1, "fd +z"); // +Z face (north polar)
_fd[POS_Z]->setCoord( p(0, 0, 1) );
_fd[POS_Z]->_a[PARENT_R] = _vd[1];
_fd[POS_Z]->_a[PARENT_L] = _vd[0];
_fd[POS_Z]->_a[QUADTREE] = _vd[4];
_fd[POS_Z]->_a[GDPARENT] = _vd[5];
_fd[POS_Z]->_orientation = 6; // 4
// The next 3 share vd7 as a common QUADTREE ancestor:
_fd[POS_Y] = new Diamond(mesh, TileKey(0,3,0,_profile.get()), 1, "fd +y"); // +Y face (90=>180 long)
_fd[POS_Y]->setCoord( p(0, 1, 0) );
_fd[POS_Y]->_a[PARENT_R] = _vd[1];
_fd[POS_Y]->_a[PARENT_L] = _vd[3];
_fd[POS_Y]->_a[QUADTREE] = _vd[7];
_fd[POS_Y]->_a[GDPARENT] = _vd[4];
_fd[POS_Y]->_orientation = 2;
_fd[NEG_X] = new Diamond(mesh, TileKey(0,0,0,_profile.get()), 1, "fd -x"); // -X face (-180=>-90 long)
_fd[NEG_X]->setCoord( p(-1, 0, 0) );
_fd[NEG_X]->_a[PARENT_R] = _vd[2];
_fd[NEG_X]->_a[PARENT_L] = _vd[1];
_fd[NEG_X]->_a[QUADTREE] = _vd[7];
_fd[NEG_X]->_a[GDPARENT] = _vd[5];
_fd[NEG_X]->_orientation = 0;
_fd[NEG_Z] = new Diamond(mesh, TileKey(0,5,0,_profile.get()), 1, "fd -z"); // -Z face (south polar)
_fd[NEG_Z]->setCoord( p(0, 0, -1) );
_fd[NEG_Z]->_a[PARENT_R] = _vd[3];
_fd[NEG_Z]->_a[PARENT_L] = _vd[2];
_fd[NEG_Z]->_a[QUADTREE] = _vd[7];
_fd[NEG_Z]->_a[GDPARENT] = _vd[6];
_fd[NEG_Z]->_orientation = 0;
// Next, construct the 12 root edge diamonds. These are the roots of the global
// bintree, and are the first elements that actually get drawn. Each edge diamond
// represents an edge of the cube, with its vertex position at the midpoint of that
// edge. Each edge diamond has two face diamonds as parents, and one vertex diamond
// as its "quadtree" ancestor. That adds up to the 4 verts of the diamond.
// GROUP OF THREE under the vd[0] "quadtree":
_ed[0] = new Diamond(mesh, TileKey(), 2, "ed0");
_ed[0]->setCoord( p(0, -1, 1) );
_ed[0]->_a[PARENT_R] = _fd[POS_Z];
_ed[0]->_a[PARENT_L] = _fd[NEG_Y];
_ed[0]->_a[QUADTREE] = _vd[0];
_ed[0]->_a[GDPARENT] = _vd[5];
// _ed[0]->_color = RED;
_ed[1] = new Diamond(mesh, TileKey(), 2, "ed1");
_ed[1]->setCoord( p(1, -1, 0 ) );
_ed[1]->_a[PARENT_R] = _fd[NEG_Y];
_ed[1]->_a[PARENT_L] = _fd[POS_X];
_ed[1]->_a[QUADTREE] = _vd[0];
_ed[1]->_a[GDPARENT] = _vd[6];
//_ed[1]->_color = RED;
_ed[2] = new Diamond(mesh, TileKey(), 2, "ed2");
_ed[2]->setCoord( p(1, 0, 1) );
_ed[2]->_a[PARENT_R] = _fd[POS_X];
_ed[2]->_a[PARENT_L] = _fd[POS_Z];
_ed[2]->_a[QUADTREE] = _vd[0];
_ed[2]->_a[GDPARENT] = _vd[4];
//_ed[2]->_color = RED;
// GROUP OF THREE under the vd[1] "quadtree":
_ed[3] = new Diamond(mesh, TileKey(), 2, "ed3");
_ed[3]->setCoord( p(0, 1, 1) );
_ed[3]->_a[PARENT_R] = _fd[POS_Z];
_ed[3]->_a[PARENT_L] = _fd[POS_Y];
_ed[3]->_a[QUADTREE] = _vd[1];
_ed[3]->_a[GDPARENT] = _vd[4];
//_ed[3]->_color = GREEN;
_ed[4] = new Diamond(mesh, TileKey(), 2, "ed4");
_ed[4]->setCoord( p(-1, 1, 0) );
_ed[4]->_a[PARENT_R] = _fd[POS_Y];
_ed[4]->_a[PARENT_L] = _fd[NEG_X];
_ed[4]->_a[QUADTREE] = _vd[1];
_ed[4]->_a[GDPARENT] = _vd[7];
//_ed[4]->_color = GREEN;
_ed[5] = new Diamond(mesh, TileKey(), 2, "ed5");
_ed[5]->setCoord( p(-1, 0, 1) );
_ed[5]->_a[PARENT_R] = _fd[NEG_X];
_ed[5]->_a[PARENT_L] = _fd[POS_Z];
_ed[5]->_a[QUADTREE] = _vd[1];
_ed[5]->_a[GDPARENT] = _vd[5];
//_ed[5]->_color = GREEN;
// GROUP OF THREE under the vd[2] "quadtree":
_ed[6] = new Diamond(mesh, TileKey(), 2, "ed6");
_ed[6]->setCoord( p(-1, -1, 0) );
_ed[6]->_a[PARENT_R] = _fd[NEG_Y];
_ed[6]->_a[PARENT_L] = _fd[NEG_X];
_ed[6]->_a[QUADTREE] = _vd[2];
_ed[6]->_a[GDPARENT] = _vd[5];
//_ed[6]->_color = BLUE;
_ed[7] = new Diamond(mesh, TileKey(), 2, "ed7");
_ed[7]->setCoord( p(-1, 0, -1) );
_ed[7]->_a[PARENT_R] = _fd[NEG_X];
_ed[7]->_a[PARENT_L] = _fd[NEG_Z];
_ed[7]->_a[QUADTREE] = _vd[2];
_ed[7]->_a[GDPARENT] = _vd[7];
//_ed[7]->_color = BLUE;
_ed[8] = new Diamond(mesh, TileKey(), 2, "ed8");
_ed[8]->setCoord( p(0, -1, -1) );
_ed[8]->_a[PARENT_R] = _fd[NEG_Z];
_ed[8]->_a[PARENT_L] = _fd[NEG_Y];
_ed[8]->_a[QUADTREE] = _vd[2];
_ed[8]->_a[GDPARENT] = _vd[6];
//_ed[8]->_color = BLUE;
// GROUP OF THREE under the vd[3] "quadtree":
_ed[9] = new Diamond(mesh, TileKey(), 2, "ed9");
_ed[9]->setCoord( p(1, 1, 0) );
_ed[9]->_a[PARENT_R] = _fd[POS_Y];
_ed[9]->_a[PARENT_L] = _fd[POS_X];
_ed[9]->_a[QUADTREE] = _vd[3];
_ed[9]->_a[GDPARENT] = _vd[4];
//_ed[9]->_color = YELLOW;
_ed[10] = new Diamond(mesh, TileKey(), 2, "ed10");
_ed[10]->setCoord( p(1, 0, -1) );
_ed[10]->_a[PARENT_R] = _fd[POS_X];
_ed[10]->_a[PARENT_L] = _fd[NEG_Z];
_ed[10]->_a[QUADTREE] = _vd[3];
_ed[10]->_a[GDPARENT] = _vd[6];
//_ed[10]->_color = YELLOW;
_ed[11] = new Diamond(mesh, TileKey(), 2, "ed11");
_ed[11]->setCoord( p(0, 1, -1) );
_ed[11]->_a[PARENT_R] = _fd[NEG_Z];
_ed[11]->_a[PARENT_L] = _fd[POS_Y];
_ed[11]->_a[QUADTREE] = _vd[3];
_ed[11]->_a[GDPARENT] = _vd[7];
//_ed[11]->_color = YELLOW;
// NEXT, set the pointers from each face diamond to its 4 children. We can double-
// check these by looking at the ancestor assignments above. They should match up.
// At the same time, we assign the back pointers from each of the edge diamonds to
// their 2 parents.
_fd[POS_X]->setChild( 0, _ed[10].get() );
_fd[POS_X]->setChild( 1, _ed[9].get() );
_fd[POS_X]->setChild( 2, _ed[2].get() );
_fd[POS_X]->setChild( 3, _ed[1].get() );
_fd[NEG_Y]->setChild( 0, _ed[6].get() );
_fd[NEG_Y]->setChild( 1, _ed[8].get() );
_fd[NEG_Y]->setChild( 2, _ed[1].get() );
_fd[NEG_Y]->setChild( 3, _ed[0].get() );
_fd[POS_Z]->setChild( 0, _ed[3].get() );
_fd[POS_Z]->setChild( 1, _ed[5].get() );
_fd[POS_Z]->setChild( 2, _ed[0].get() );
_fd[POS_Z]->setChild( 3, _ed[2].get() );
_fd[POS_Y]->setChild( 0, _ed[4].get() );
_fd[POS_Y]->setChild( 1, _ed[3].get() );
_fd[POS_Y]->setChild( 2, _ed[9].get() );
_fd[POS_Y]->setChild( 3, _ed[11].get() );
_fd[NEG_X]->setChild( 0, _ed[7].get() );
_fd[NEG_X]->setChild( 1, _ed[6].get() );
_fd[NEG_X]->setChild( 2, _ed[5].get() );
_fd[NEG_X]->setChild( 3, _ed[4].get() );
_fd[NEG_Z]->setChild( 0, _ed[11].get() );
_fd[NEG_Z]->setChild( 1, _ed[10].get() );
_fd[NEG_Z]->setChild( 2, _ed[8].get() );
_fd[NEG_Z]->setChild( 3, _ed[7].get() );
// seed the bouding spheres of the manifold diamonds:
for( unsigned short f=0; f<6; ++f )
_fd[f]->activate();
for( unsigned short e=0; e<12; ++e )
_ed[e]->activate();
// generate Level 3 (the first renderable quadtree decendants).
seed( 3 );
// hopefully, that's it!
}
Here is the call graph for this function:| osg::Vec3d CubeManifold::midpoint | ( | const osg::Vec3d & | mapCoord0, |
| const osg::Vec3d & | mapCoord1 | ||
| ) | const [virtual] |
calculates the midpoint between two map coodinates
Implements Manifold.
Definition at line 353 of file CubeManifold.cpp.
{
return (p0+p1)*0.5;
}
| osg::Vec3d CubeManifold::p | ( | double | x, |
| double | y, | ||
| double | z | ||
| ) | const |
Definition at line 295 of file CubeManifold.cpp.
{
osg::Vec3d v( x, y, z );
return v;
}
Here is the caller graph for this function:| void CubeManifold::seed | ( | Level | maxLevel | ) |
generate children up to the specified level
Definition at line 396 of file CubeManifold.cpp.
{
for( unsigned short e=0; e<12; ++e )
{
_ed[e]->seed( maxLevel );
}
}
Here is the caller graph for this function:| osg::BoundingSphere CubeManifold::_bs |
Definition at line 58 of file CubeManifold.
| osg::ref_ptr<Diamond> CubeManifold::_ed[12] |
Definition at line 63 of file CubeManifold.
| osg::ref_ptr<const osg::EllipsoidModel> CubeManifold::_ellipsoid |
Definition at line 60 of file CubeManifold.
| osg::ref_ptr<Diamond> CubeManifold::_fd[6] |
Definition at line 62 of file CubeManifold.
| osg::ref_ptr<const Profile> CubeManifold::_profile |
Definition at line 59 of file CubeManifold.
| osg::ref_ptr<Diamond> CubeManifold::_vd[8] |
Definition at line 61 of file CubeManifold.
1.7.3