| osgEarth 2.1.1 | 
 Inheritance diagram for CubeManifold:
 Inheritance diagram for CubeManifold: Collaboration diagram for CubeManifold:
 Collaboration diagram for CubeManifold:| Public Member Functions | |
| CubeManifold () | |
| void | seed (Level maxLevel) | 
| void | cull (osgUtil::CullVisitor *cv) | 
| void | initialize (MeshManager *mesh) | 
| osg::Vec3d | midpoint (const osg::Vec3d &mapCoord0, const osg::Vec3d &mapCoord1) const | 
| osg::BoundingSphere | initialBound () const | 
| MeshNode | createNode (const osg::Vec3d &manifoldCoord) const | 
| osg::Vec3d | p (double x, double y, double z) const | 
| Public Attributes | |
| osg::BoundingSphere | _bs | 
| osg::ref_ptr< const Profile > | _profile | 
| osg::ref_ptr< const osg::EllipsoidModel > | _ellipsoid | 
| osg::ref_ptr< Diamond > | _vd [8] | 
| osg::ref_ptr< Diamond > | _fd [6] | 
| osg::ref_ptr< Diamond > | _ed [12] | 
The top-level diamond layout for a round earth
Definition at line 29 of file CubeManifold.
| CubeManifold::CubeManifold | ( | ) | 
Definition at line 31 of file CubeManifold.cpp.
{
    _profile = new osgEarth::UnifiedCubeProfile();
    _ellipsoid = _profile->getSRS()->getGeographicSRS()->getEllipsoid();
}
| MeshNode CubeManifold::createNode | ( | const osg::Vec3d & | manifoldCoord | ) | const  [virtual] | 
creates a mesh node for a coordinate in manifold profile
Implements Manifold.
Definition at line 359 of file CubeManifold.cpp.
{
    MeshNode node;
    node._manifoldCoord = manCoord;
    
    toLonLatRad( manCoord, node._geodeticCoord ); // our manifold coords are already geodetic
    osg::Matrixd local2world;
    _ellipsoid->computeLocalToWorldTransformFromLatLongHeight(
        node._geodeticCoord.y(), node._geodeticCoord.x(), node._geodeticCoord.z(),
        local2world );
    node._vertex = local2world.getTrans();
    node._normal = node._vertex;
    node._normal.normalize();
    //node._normal = _ellipsoid->computeLocalUpVector(
    //    node._vertex.x(), node._vertex.y(), node._vertex.z() );
    node._geodeticRot = local2world.getRotate();
    //OE_INFO << LC
    //    << "ROT: x=" << node._geodeticRot.x() << ", y=" << node._geodeticRot.y()
    //    << ", z=" << node._geodeticRot.z() << ", w=" << node._geodeticRot.w()
    //    << std::endl;
    return node;
}
 Here is the call graph for this function:
 Here is the call graph for this function:| void CubeManifold::cull | ( | osgUtil::CullVisitor * | cv | ) |  [virtual] | 
apply culling to the manifold.
Implements Manifold.
Definition at line 405 of file CubeManifold.cpp.
{
    for( unsigned short e=0; e<12; ++e )
    {
        _ed[e]->cull( cv );
    }
}
| osg::BoundingSphere CubeManifold::initialBound | ( | ) | const  [virtual] | 
calculates the initial bound for the manifold.
Implements Manifold.
Definition at line 389 of file CubeManifold.cpp.
{
    return osg::BoundingSphere( osg::Vec3d(0,0,0), _ellipsoid->getRadiusEquator() * 1.2 );
    //return osg::BoundingSphere( osg::Vec3d(0,0,0), 2.0 );
}
| void CubeManifold::initialize | ( | MeshManager * | mesh | ) |  [virtual] | 
builds the base manifold mesh.
Implements Manifold.
Definition at line 38 of file CubeManifold.cpp.
{
    // diamonds at or below level 3 are static and cannot be removed.
    // Level 1 is the first Quadtree Ancestor. Level 3 contains the first Quadtree
    // decendants (the decendants of the Level 1 quadtrees).
    mesh->_minGeomLevel = 1;
    mesh->_minActiveLevel = 3;
    // Construct the eight root "vertex diamonds". These are used only for their
    // vertex positions (as grandparents of the root edge diamonds). They have
    // no children or ancestors of their own.
    _vd[0] = new Diamond(mesh, TileKey(), 0, "vd0"); // X, -Y, Z
    _vd[0]->setCoord( p(1, -1, 1) );
    _vd[0]->_childValence = 3;
    _vd[1] = new Diamond(mesh, TileKey(), 0, "vd1"); // -X, Y, Z
    _vd[1]->setCoord( p(-1, 1, 1) );
    _vd[0]->_childValence = 3;
    _vd[2] = new Diamond(mesh, TileKey(), 0, "vd2"); // -X, -Y, -Z
    _vd[2]->setCoord( p(-1, -1, -1) );
    _vd[0]->_childValence = 3;
    _vd[3] = new Diamond(mesh, TileKey(), 0, "vd3"); // X, Y, -Z
    _vd[3]->setCoord( p(1, 1, -1) );
    _vd[0]->_childValence = 3;
    _vd[4] = new Diamond(mesh, TileKey(), 0, "vd4"); // X, Y, Z
    _vd[4]->setCoord( p(1, 1, 1) );
    _vd[0]->_childValence = 3;
    _vd[5] = new Diamond(mesh, TileKey(), 0, "vd5"); // -X, -Y, Z
    _vd[5]->setCoord( p(-1, -1, 1) );
    _vd[0]->_childValence = 3;
    _vd[6] = new Diamond(mesh, TileKey(), 0, "vd6"); // X, -Y, -Z
    _vd[6]->setCoord( p(1, -1, -1) );
    _vd[0]->_childValence = 3;
    _vd[7] = new Diamond(mesh, TileKey(), 0, "vd7"); // -X, Y, -Z
    _vd[7]->setCoord( p(-1, 1, -1) );
    _vd[0]->_childValence = 3;
    // Construct the 6 face diamonds. Exactly 2 faces parent each edge diamond (constructed
    // later). The vertex position of each face diamond resides as the center of that face
    // on the cube. The faces are carefully oriented so that child diamonds are anchored
    // (i.e. have their QUADTREE ancestor) at the PARENT_L and PARENT_R positions. This is
    // critical for proper subdivision and orientation propagation.
    // The first 3 share vd0 as a common PARENT_L ancestor:
    _fd[NEG_Y] = new Diamond(mesh, TileKey(0,1,0,_profile.get()), 1, "fd -y"); // -Y face (-90=>0 long)
    _fd[NEG_Y]->setCoord( p(0, -1, 0) );
    _fd[NEG_Y]->_a[PARENT_R] = _vd[2];
    _fd[NEG_Y]->_a[PARENT_L] = _vd[0];
    _fd[NEG_Y]->_a[QUADTREE] = _vd[5];
    _fd[NEG_Y]->_a[GDPARENT] = _vd[6];
    _fd[NEG_Y]->_orientation = 6;
    _fd[POS_X] = new Diamond(mesh, TileKey(0,2,0,_profile.get()), 1, "fd +x"); // +X face (0=>90 long)
    _fd[POS_X]->setCoord( p(1, 0, 0) );
    _fd[POS_X]->_a[PARENT_R] = _vd[3];
    _fd[POS_X]->_a[PARENT_L] = _vd[0];
    _fd[POS_X]->_a[QUADTREE] = _vd[6];
    _fd[POS_X]->_a[GDPARENT] = _vd[4];
    _fd[POS_X]->_orientation = 0;
    _fd[POS_Z] = new Diamond(mesh, TileKey(0,4,0,_profile.get()), 1, "fd +z"); // +Z face (north polar)
    _fd[POS_Z]->setCoord( p(0, 0, 1) );
    _fd[POS_Z]->_a[PARENT_R] = _vd[1];
    _fd[POS_Z]->_a[PARENT_L] = _vd[0];
    _fd[POS_Z]->_a[QUADTREE] = _vd[4];
    _fd[POS_Z]->_a[GDPARENT] = _vd[5];
    _fd[POS_Z]->_orientation = 6; // 4
    // The next 3 share vd7 as a common QUADTREE ancestor:
    _fd[POS_Y] = new Diamond(mesh, TileKey(0,3,0,_profile.get()), 1, "fd +y"); // +Y face (90=>180 long)
    _fd[POS_Y]->setCoord( p(0, 1, 0) );
    _fd[POS_Y]->_a[PARENT_R] = _vd[1];
    _fd[POS_Y]->_a[PARENT_L] = _vd[3];
    _fd[POS_Y]->_a[QUADTREE] = _vd[7];
    _fd[POS_Y]->_a[GDPARENT] = _vd[4];
    _fd[POS_Y]->_orientation = 2;
    _fd[NEG_X] = new Diamond(mesh, TileKey(0,0,0,_profile.get()), 1, "fd -x"); // -X face (-180=>-90 long)
    _fd[NEG_X]->setCoord( p(-1, 0, 0) );
    _fd[NEG_X]->_a[PARENT_R] = _vd[2];
    _fd[NEG_X]->_a[PARENT_L] = _vd[1];
    _fd[NEG_X]->_a[QUADTREE] = _vd[7];
    _fd[NEG_X]->_a[GDPARENT] = _vd[5];
    _fd[NEG_X]->_orientation = 0;
    _fd[NEG_Z] = new Diamond(mesh, TileKey(0,5,0,_profile.get()), 1, "fd -z"); // -Z face (south polar)
    _fd[NEG_Z]->setCoord( p(0, 0, -1) );
    _fd[NEG_Z]->_a[PARENT_R] = _vd[3];
    _fd[NEG_Z]->_a[PARENT_L] = _vd[2];
    _fd[NEG_Z]->_a[QUADTREE] = _vd[7];
    _fd[NEG_Z]->_a[GDPARENT] = _vd[6];
    _fd[NEG_Z]->_orientation = 0;
    // Next, construct the 12 root edge diamonds. These are the roots of the global
    // bintree, and are the first elements that actually get drawn. Each edge diamond
    // represents an edge of the cube, with its vertex position at the midpoint of that
    // edge. Each edge diamond has two face diamonds as parents, and one vertex diamond
    // as its "quadtree" ancestor. That adds up to the 4 verts of the diamond.
    // GROUP OF THREE under the vd[0] "quadtree":
    _ed[0] = new Diamond(mesh, TileKey(), 2, "ed0");
    _ed[0]->setCoord( p(0, -1, 1) );
    _ed[0]->_a[PARENT_R] = _fd[POS_Z];
    _ed[0]->_a[PARENT_L] = _fd[NEG_Y];
    _ed[0]->_a[QUADTREE] = _vd[0];
    _ed[0]->_a[GDPARENT] = _vd[5];
//    _ed[0]->_color = RED;
    _ed[1] = new Diamond(mesh, TileKey(), 2, "ed1");
    _ed[1]->setCoord( p(1, -1, 0 ) );
    _ed[1]->_a[PARENT_R] = _fd[NEG_Y];
    _ed[1]->_a[PARENT_L] = _fd[POS_X];
    _ed[1]->_a[QUADTREE] = _vd[0];
    _ed[1]->_a[GDPARENT] = _vd[6];
    //_ed[1]->_color = RED;
    _ed[2] = new Diamond(mesh, TileKey(), 2, "ed2");
    _ed[2]->setCoord( p(1, 0, 1) );
    _ed[2]->_a[PARENT_R] = _fd[POS_X];
    _ed[2]->_a[PARENT_L] = _fd[POS_Z];
    _ed[2]->_a[QUADTREE] = _vd[0];
    _ed[2]->_a[GDPARENT] = _vd[4];
    //_ed[2]->_color = RED;
    // GROUP OF THREE under the vd[1] "quadtree":
    _ed[3] = new Diamond(mesh, TileKey(), 2, "ed3");
    _ed[3]->setCoord( p(0, 1, 1) );
    _ed[3]->_a[PARENT_R] = _fd[POS_Z];
    _ed[3]->_a[PARENT_L] = _fd[POS_Y];
    _ed[3]->_a[QUADTREE] = _vd[1];
    _ed[3]->_a[GDPARENT] = _vd[4];
    //_ed[3]->_color = GREEN;
    _ed[4] = new Diamond(mesh, TileKey(), 2, "ed4");
    _ed[4]->setCoord( p(-1, 1, 0) );
    _ed[4]->_a[PARENT_R] = _fd[POS_Y];
    _ed[4]->_a[PARENT_L] = _fd[NEG_X];
    _ed[4]->_a[QUADTREE] = _vd[1];
    _ed[4]->_a[GDPARENT] = _vd[7];
    //_ed[4]->_color = GREEN;
    _ed[5] = new Diamond(mesh, TileKey(), 2, "ed5");
    _ed[5]->setCoord( p(-1, 0, 1) );
    _ed[5]->_a[PARENT_R] = _fd[NEG_X];
    _ed[5]->_a[PARENT_L] = _fd[POS_Z];
    _ed[5]->_a[QUADTREE] = _vd[1];
    _ed[5]->_a[GDPARENT] = _vd[5];
    //_ed[5]->_color = GREEN;
    // GROUP OF THREE under the vd[2] "quadtree":
    _ed[6] = new Diamond(mesh, TileKey(), 2, "ed6");
    _ed[6]->setCoord( p(-1, -1, 0) );
    _ed[6]->_a[PARENT_R] = _fd[NEG_Y];
    _ed[6]->_a[PARENT_L] = _fd[NEG_X];
    _ed[6]->_a[QUADTREE] = _vd[2];
    _ed[6]->_a[GDPARENT] = _vd[5];
    //_ed[6]->_color = BLUE;
    _ed[7] = new Diamond(mesh, TileKey(), 2, "ed7");
    _ed[7]->setCoord( p(-1, 0, -1) );
    _ed[7]->_a[PARENT_R] = _fd[NEG_X];
    _ed[7]->_a[PARENT_L] = _fd[NEG_Z];
    _ed[7]->_a[QUADTREE] = _vd[2];
    _ed[7]->_a[GDPARENT] = _vd[7];
    //_ed[7]->_color = BLUE;
    _ed[8] = new Diamond(mesh, TileKey(), 2, "ed8");
    _ed[8]->setCoord( p(0, -1, -1) );
    _ed[8]->_a[PARENT_R] = _fd[NEG_Z];
    _ed[8]->_a[PARENT_L] = _fd[NEG_Y];
    _ed[8]->_a[QUADTREE] = _vd[2];
    _ed[8]->_a[GDPARENT] = _vd[6];
    //_ed[8]->_color = BLUE;
    // GROUP OF THREE under the vd[3] "quadtree":
    _ed[9] = new Diamond(mesh, TileKey(), 2, "ed9");
    _ed[9]->setCoord( p(1, 1, 0) );
    _ed[9]->_a[PARENT_R] = _fd[POS_Y];
    _ed[9]->_a[PARENT_L] = _fd[POS_X];
    _ed[9]->_a[QUADTREE] = _vd[3];
    _ed[9]->_a[GDPARENT] = _vd[4];
    //_ed[9]->_color = YELLOW;
    _ed[10] = new Diamond(mesh, TileKey(), 2, "ed10");
    _ed[10]->setCoord( p(1, 0, -1) );
    _ed[10]->_a[PARENT_R] = _fd[POS_X];
    _ed[10]->_a[PARENT_L] = _fd[NEG_Z];
    _ed[10]->_a[QUADTREE] = _vd[3];
    _ed[10]->_a[GDPARENT] = _vd[6];
    //_ed[10]->_color = YELLOW;
    _ed[11] = new Diamond(mesh, TileKey(), 2, "ed11");
    _ed[11]->setCoord( p(0, 1, -1) );
    _ed[11]->_a[PARENT_R] = _fd[NEG_Z];
    _ed[11]->_a[PARENT_L] = _fd[POS_Y];
    _ed[11]->_a[QUADTREE] = _vd[3];
    _ed[11]->_a[GDPARENT] = _vd[7];
    //_ed[11]->_color = YELLOW;
    // NEXT, set the pointers from each face diamond to its 4 children. We can double-
    // check these by looking at the ancestor assignments above. They should match up.
    // At the same time, we assign the back pointers from each of the edge diamonds to
    // their 2 parents.
    _fd[POS_X]->setChild( 0, _ed[10].get() );
    _fd[POS_X]->setChild( 1, _ed[9].get() );
    _fd[POS_X]->setChild( 2, _ed[2].get() );
    _fd[POS_X]->setChild( 3, _ed[1].get() );
    _fd[NEG_Y]->setChild( 0, _ed[6].get() );
    _fd[NEG_Y]->setChild( 1, _ed[8].get() );
    _fd[NEG_Y]->setChild( 2, _ed[1].get() );
    _fd[NEG_Y]->setChild( 3, _ed[0].get() );
    _fd[POS_Z]->setChild( 0, _ed[3].get() );
    _fd[POS_Z]->setChild( 1, _ed[5].get() );
    _fd[POS_Z]->setChild( 2, _ed[0].get() );
    _fd[POS_Z]->setChild( 3, _ed[2].get() );
    _fd[POS_Y]->setChild( 0, _ed[4].get() );
    _fd[POS_Y]->setChild( 1, _ed[3].get() );
    _fd[POS_Y]->setChild( 2, _ed[9].get() );
    _fd[POS_Y]->setChild( 3, _ed[11].get() );
    _fd[NEG_X]->setChild( 0, _ed[7].get() );
    _fd[NEG_X]->setChild( 1, _ed[6].get() );
    _fd[NEG_X]->setChild( 2, _ed[5].get() );
    _fd[NEG_X]->setChild( 3, _ed[4].get() );
    _fd[NEG_Z]->setChild( 0, _ed[11].get() );
    _fd[NEG_Z]->setChild( 1, _ed[10].get() );
    _fd[NEG_Z]->setChild( 2, _ed[8].get() );
    _fd[NEG_Z]->setChild( 3, _ed[7].get() );
    // seed the bouding spheres of the manifold diamonds:
    for( unsigned short f=0; f<6; ++f )
        _fd[f]->activate();
    for( unsigned short e=0; e<12; ++e )
        _ed[e]->activate();
    // generate Level 3 (the first renderable quadtree decendants).
    seed( 3 );
    // hopefully, that's it!
}
 Here is the call graph for this function:
 Here is the call graph for this function:| osg::Vec3d CubeManifold::midpoint | ( | const osg::Vec3d & | mapCoord0, | 
| const osg::Vec3d & | mapCoord1 | ||
| ) | const  [virtual] | 
calculates the midpoint between two map coodinates
Implements Manifold.
Definition at line 353 of file CubeManifold.cpp.
{
    return (p0+p1)*0.5;
}
| osg::Vec3d CubeManifold::p | ( | double | x, | 
| double | y, | ||
| double | z | ||
| ) | const | 
Definition at line 295 of file CubeManifold.cpp.
{
    osg::Vec3d v( x, y, z );
    return v;
}
 Here is the caller graph for this function:
 Here is the caller graph for this function:| void CubeManifold::seed | ( | Level | maxLevel | ) | 
generate children up to the specified level
Definition at line 396 of file CubeManifold.cpp.
{
    for( unsigned short e=0; e<12; ++e )
    {
        _ed[e]->seed( maxLevel );
    }
}
 Here is the caller graph for this function:
 Here is the caller graph for this function:| osg::BoundingSphere CubeManifold::_bs | 
Definition at line 58 of file CubeManifold.
| osg::ref_ptr<Diamond> CubeManifold::_ed[12] | 
Definition at line 63 of file CubeManifold.
| osg::ref_ptr<const osg::EllipsoidModel> CubeManifold::_ellipsoid | 
Definition at line 60 of file CubeManifold.
| osg::ref_ptr<Diamond> CubeManifold::_fd[6] | 
Definition at line 62 of file CubeManifold.
| osg::ref_ptr<const Profile> CubeManifold::_profile | 
Definition at line 59 of file CubeManifold.
| osg::ref_ptr<Diamond> CubeManifold::_vd[8] | 
Definition at line 61 of file CubeManifold.
 1.7.3
 1.7.3