osgEarth 2.1.1
|
Static Public Member Functions | |
static osg::Matrixd | createInverseRefFrame (const osg::Vec3d &ecefRefPoint) |
static void | transformAndLocalize (const osg::Vec3d &input, osg::Vec3d &output, const SpatialReference *srs, const osg::Matrixd &world2local=osg::Matrixd()) |
static void | transformAndLocalize (const std::vector< osg::Vec3d > &input, osg::Vec3Array *output, const SpatialReference *srs, const osg::Matrixd &world2local=osg::Matrixd()) |
static void | transformAndGetRotationMatrix (const SpatialReference *input_srs, const osg::Vec3d &input, osg::Vec3d &out_ecef_point, osg::Matrixd &out_rotation) |
osg::Matrixd ECEF::createInverseRefFrame | ( | const osg::Vec3d & | ecefRefPoint | ) | [static] |
Creates a "localization" matrix for double-precision geocentric coordinates. The matrix is ceneterd at the specified ECEF reference point.
Definition at line 30 of file ECEF.cpp.
{ // convert to geocentric first: double X = input.x(), Y = input.y(), Z = input.z(); osg::Matrixd localToWorld; localToWorld.makeTranslate(X,Y,Z); // normalize X,Y,Z double inverse_length = 1.0/sqrt(X*X + Y*Y + Z*Z); X *= inverse_length; Y *= inverse_length; Z *= inverse_length; double length_XY = sqrt(X*X + Y*Y); double inverse_length_XY = 1.0/length_XY; // Vx = |(-Y,X,0)| localToWorld(0,0) = -Y*inverse_length_XY; localToWorld(0,1) = X*inverse_length_XY; localToWorld(0,2) = 0.0; // Vy = /(-Z*X/(sqrt(X*X+Y*Y), -Z*Y/(sqrt(X*X+Y*Y),sqrt(X*X+Y*Y))| double Vy_x = -Z*X*inverse_length_XY; double Vy_y = -Z*Y*inverse_length_XY; double Vy_z = length_XY; inverse_length = 1.0/sqrt(Vy_x*Vy_x + Vy_y*Vy_y + Vy_z*Vy_z); localToWorld(1,0) = Vy_x*inverse_length; localToWorld(1,1) = Vy_y*inverse_length; localToWorld(1,2) = Vy_z*inverse_length; // Vz = (X,Y,Z) localToWorld(2,0) = X; localToWorld(2,1) = Y; localToWorld(2,2) = Z; return localToWorld; }
void ECEF::transformAndGetRotationMatrix | ( | const SpatialReference * | input_srs, |
const osg::Vec3d & | input, | ||
osg::Vec3d & | out_ecef_point, | ||
osg::Matrixd & | out_rotation | ||
) | [static] |
Transforms a point to ECEF, and at the same time returns a quaternion that rotates the point into the local tangent place at that point.
Definition at line 98 of file ECEF.cpp.
{ osg::Vec3d geod_point; if ( !srs->isGeographic() ) srs->transform( input, srs->getGeographicSRS(), geod_point ); else geod_point = input; const osg::EllipsoidModel* em = srs->getEllipsoid(); em->convertLatLongHeightToXYZ( osg::DegreesToRadians( geod_point.y() ), osg::DegreesToRadians( geod_point.x() ), geod_point.z(), out_point.x(), out_point.y(), out_point.z() ); em->computeCoordinateFrame( osg::DegreesToRadians( geod_point.y() ), osg::DegreesToRadians( geod_point.x() ), out_rotation ); }
void ECEF::transformAndLocalize | ( | const std::vector< osg::Vec3d > & | input, |
osg::Vec3Array * | output, | ||
const SpatialReference * | srs, | ||
const osg::Matrixd & | world2local = osg::Matrixd() |
||
) | [static] |
Transforms the points in "input" to ECEF coordinates, localizes them with the provided world2local matrix, and puts the result in "output".
Definition at line 83 of file ECEF.cpp.
{ output->reserve( output->size() + input.size() ); for( std::vector<osg::Vec3d>::const_iterator i = input.begin(); i != input.end(); ++i ) { osg::Vec3d ecef; srs->transformToECEF( *i, ecef ); output->push_back( ecef * world2local ); } }
void ECEF::transformAndLocalize | ( | const osg::Vec3d & | input, |
osg::Vec3d & | output, | ||
const SpatialReference * | srs, | ||
const osg::Matrixd & | world2local = osg::Matrixd() |
||
) | [static] |
Transforms a point into ECEF coordinates, localizes it with the provided world2local matrix, and puts the result in "output".
Definition at line 71 of file ECEF.cpp.
{ osg::Vec3d ecef; srs->transformToECEF( input, ecef ); output = ecef * world2local; }